Oct. 12th, 2022

timelets: (Default)
This is an important insight: comma categories always have a terminal object. Now, I can relate it to Lawvere's interpretation of Hegel's logic.


"If X is any application of the graphic G , then the "comma" category G/X (whose objects are the elements of X and whose morphisms determine the action via the discrete fibration property of the labelling functor G/X -> G ) is again a graphic. Thus each particular application X of G provides one way G'-> G of expanding the graphic G into a more detailed graphic G' " -- Lawvere, Hegelian Taco.

Profile

timelets: (Default)
timelets

February 2026

S M T W T F S
123 4 5 6 7
891011121314
15161718192021
22232425262728

Most Popular Tags

Page Summary

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 9th, 2026 06:02 am
Powered by Dreamwidth Studios